On a Certain Quadratic Character Sums of Ternary Symmetry Polynomials mod p
نویسندگان
چکیده
منابع مشابه
On Character Sums of Binary Quadratic Forms
We establish character sum bounds of the form ∣∣∣∣ ∑ a≤x≤a+H b≤y≤b+H χ(x + ky) ∣∣∣∣ < p−τH2, where χ is a nontrivial character (mod p), p 1 4 +ε < H < p, and |a|, |b| < p H. As an application, we obtain that given k ∈ Z\{0}, x + k is a quadratic non-residue (mod p) for some 1 ≤ x < p 1 2e. Introduction. Let k be a nonzero integer. Let p be a large prime and let H ≤ p. We are interested in the c...
متن کاملOn almost universal ternary inhomogeneous quadratic polynomials
A fundamental question in the study of integral quadratic forms is the representation problem which asks for an effective determination of the set of integers represented by a given quadratic form. A related and equally interesting problem is the representation of integers by inhomogeneous quadratic polynomials. An inhomogeneous quadratic polynomial is a sum of a quadratic form and a linear for...
متن کاملCharacter Sums with Division Polynomials
We obtain nontrivial estimates of quadratic character sums of division polynomials Ψn(P ), n = 1, 2, . . ., evaluated at a given point P on an elliptic curve over a finite field of q elements. Our bounds are nontrivial if the order of P is at least q for some fixed ε > 0. This work is motivated by an open question about statistical indistinguishability of some cryptographically relevant sequenc...
متن کاملGauss Sums & Representation by Ternary Quadratic Forms
This paper specifies some conditions as to when an integer m is locally represented by a positive definite diagonal integer-matrix ternary quadratic form Q at a prime p. We use quadratic Gauss sums and a version of Hensel’s Lemma to count how many solutions there are to the equivalence Q(~x) ≡ m (mod p) for any k ≥ 0. Given that m is coprime to the determinant of the Hessian matrix of Q, we can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2021/5572835